
An Adaptable Binary Entropy Coder
Aaron Kiely and Matthew Klimesh

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Mail Stop 238-420, Pasadena, CA 91109

e-mail: {aaron, klimesh}@shannon. j p l . nasa . gov

Abstract- We present a novel entropy coding technique which is based on recur-
sive interleaving of variable-to-variable length binary source codes. The encoding is
adaptable in that each bit to be encoded may have an associated probability estimate
which depends on previously encoded bits. The technique can achieve arbitrarily
small redundancy, and may have advantages over arithmetic coding, including most
notably the admission of a simple and fast decoder. We discuss code design and per-
formance estimation methods, as well as practical encoding and decoding algorithms.

1 Introduction

In data compression algorithms the need frequently arises to compress a binary se-
quence in which each bit has some estimated distribution, i.e., probability of being
equal to zero. If long runs of bits have nearly identical distributions, then simple
source codes, most notably Golomb’s runlength codes [I], are quite efficient. How-
ever, in many practical situations, not only does the distribution vary from bit to bit,
but it is desirable to have the estimated distribution for a bit depend on the values
of earlier bits. Accommodating such a dynamically changing probability estimate
is tricky because the decoder must make the same estimates as the encoder. Thus,
before the ith bit can be decoded, the value of the first i - 1 bits must be deter-
mined. This complication makes it difficult to efficiently use simple source codes such
as runlength codes.

To our knowledge, currently the only efficient encoding methods in this case are
arithmetic coding [2, 31 and the relatively unknown technique called interleaved en-
tropy coding [4], which is a generalization of the “block Melcode” [5]. In this paper,
we describe a new entropy coding technique which is a generalization of the inter-
leaved entropy coding method. The technique efficiently encodes a binary source with
a bit-wise adaptive probability estimate by recursively encoding groups of bits with
similar distributions, ordering the output in a way that is suited to the decoder. As
a result, the decoder has low complexity.

The functionality of our coding technique is essentially the same as that of binary
arithmetic coding; however, our technique does not yield an arithmetic code and
there are many practical differences. Arithmetic encoding of one bit requires a few
arithmetic operations and, unless approximations are made, at least one multiplica-
tion. Our encoder requires no arithmetic operations except those needed to choose a

The work described was funded by the TMOD Technology Program and performed at the
Jet Propulsion Laboratory, California Institute of Technology under contract with the National
Aeronautics and Space Administration.

code index based on the bit distribution; however it requires some bookkeeping and
bit manipulation operations. Our encoder requires more memory than arithmetic
coding. Arithmetic decoders are generally of similar complexity to the encoders, but
our decoder is much simpler than our encoder: it needs fewer operations than the
encoder, and requires only a small amount of memory.

1.1 The Source Coding Problem

We examine the problem of compressing a sequence of bits b l , bz, . . . from a random
source. The estimate of source probability pi = Prob[bi = 01 may depend on the values
of the source sequence prior to index i , and on any other information available to both
the encoder and decoder. This dependence encompasses both adaptive probability
estimation as well as correlations or memory in the source. Consequently, efficient
encoding requires a bit-wise adaptable encoder. We are not concerned here with
methods of modeling the source, and so we make no distinction between the actual
and estimated source distributions.

Without loss of generality, we will assume that pi 2 1/2 for each index i. If this
were not the case for some pi , we could simply invert bit bi before encoding to make
it so (and this inversion can clearly be duplicated in the decoder).

We also assume that the decoder can determine when decoding is complete. In
practice, this often occurs automatically, or straightforward methods can be used,
such as transmitting the sequence length prior to the compressed sequence. Such
methods will not be addressed here.

Although we only discuss the compression of binary sequences, given any nonbi-
nary source we can assign prefix-free binary codewords to source symbols to produce
a binary stream. Thus the technique can be applied to nonbinary sources as well.

1.2 The Recursive Interleaved Entropy Coding Concept
In this section we give an overview of how the entr'opy coding technique works and
why it yields low redundancy. To simplify the explanation, some of the processing
details are omitted until Section 2.

Since, by assumption, each bit has probability of zero at least 1/2, we are con-
cerned with the probability region [1/2,1]. We partition this region into several
narrow intervals, and with each interval we associate a bin that will be used to store
bits. When bit bi arrives, we place it into the bin corresponding to the interval con-
taining p i . Because each interval spans a small probability range, all of the bits in a
given bin have nearly the same probability of being zero, and we can think of each
bin as corresponding to some nominal probability value.

For each bin (except the leftmost bin, which contains probability 1/2) we specify
an exhaustive prefix-free set of binary codewords. When the bits collected in a bin
form one of these codewords, we delete these bits from the bin and encode the value
of the codeword by placing one or more new bits in other bins'. This process is

'The ordering of the new bits in a bin is not straightforward and we save these details for

2

conveniently described using a binary tree. Each codeword is assigned t o a terminal
node in the tree, non-terminal nodes are labeled with a destination bin, and the
branch labels (each a zero or one) correspond to the output bits that are placed in
the destination bins.

For example, Figure 1 shows a tree that might be used for
a bin with nominal probability 0.9. The prefix-free codeword
set for this bin is {00 ,01 , l } , shown as labels of the terminal
nodes in the tree. If the codeword to be processed in the bin
is 00, which occurs with probability approximately 0.81, we
place a zero in the bin that contains probability 0.81. If the
codeword is 1, first we place a one in the bin containing prob-
ability 0.81, which indicates that the codeword is something
other than 00, then we place a zero in the bin containing
probability 0.53 because, given that the codeword is not 00,
the conditional probability that the codeword is 1 is approximately 0.53. We can
see that this process might contribute to data compression because the most likely
codeword is 00, which is represented using a single bit.

For the leftmost bin we do not define a tree such as the one in Figure 1. Instead,
bits in this bin form the encoder’s output. Bits that reach the first bin have probability
of being zero very close to 1 / 2 and are thus nearly incompressible, so transmitting
these bits uncoded does not add much redundancy.

During the encoding process, bits arrive in various bins either directly from the
source or as a result of processing codewords in other bins. Our goal is to have bits
migrate to the leftmost (uncoded) bin, where they are transmitted. To accomplish
this, we impose the constraint on the design of our trees that all new bits resulting
from the processing of each codeword must be placed in bins strictly to the left of the
bin in which the codeword was formed. Apart from our desire t o move bits to the
left, this constraint also prevents encoded information from traveling in “loops”, which
would make coding difficult or impossible. Thus if a bin has nominal probability p ,
we would like the probability of a zero for each output bit t o be in the range [l / 2 , p) .
A tree with this property is said to be useful at p . Perhaps surprisingly, useful trees
exist everywhere:
Theorem For any given probability value p E (1 / 2 , 1) , there exists a useful tree, i.e.,
one with the property that all output bits have probability of zero in the range [1/2,p) .
This is proved by constructing an infinite family of trees for which at least one tree is
useful at any given p E (1 / 2 , 1) . Figure 2 illustrates this construction. We omit the
details of the proof.

When we reach the end of the bit sequence to be encoded and no codewords
remain in any bin, there will generally be partially formed codewords in one or more
bins. Since these bits are needed for decoding, we append one or more extra bits to
each of these partial codewords to form complete codewords which are then processed
in the normal manner2.

Section 2.2.
2The method of selecting these extra bits that “flush” the encoder is relatively unimportant.

3

We can see that some redundancy is present in this system because the bins have
positive width - the probability associated with a bit that arrives in a bin will
usually not exactly equal the bin's nominal probability, and bits in the leftmost bin
are transmitted uncompressed even though they may not have probability of zero
exactly equal to 1/2. However, we can reduce the redundancy by increasing the the
number of bins and/or the size of the trees.

In practice, the encoder and decoder do
not keep track of probability values. In-
stead, each bin is assigned an index, start-
ing with index 1 corresponding to the left-
most (uncoded) bin. At each non-terminal
node in the tree we identify the index, rather
than the nominal probability value, of the
bin to which the associated output bit is
mapped. The constraint we impose on en-
coder design is that each output bit from
the tree for bin j must be mapped to a bin
with index strictly less than j . No com-
putations involving probability values are
needed apart from those which may be re-
quired to map each input bit bi to the ap-
propriate bin index.

... ((::::1
0"*1

001

110

Figure 2: A tree tha t is useful for p E
(m , yn-2), where n 2 2. Here T~ is the
root in (1/2,1] of pi = (1 - p)+l for
i > 1, and yo = 1.

For example, a five bin encoder is defined by the trees shown in Figure 3. Fig-
ure 3(c) indicates, e.g., that if codeword 01 is formed in bin 4 then we place bits l,O,l
in bins 3,2,1 respectively. A complete encoder description also requires identification
of the probability region over which each bin should be used, or a rule for mapping
input bits to bins. We omit this detail to simplify the discussion.

(a) bin 2 (b) bin 3 (c) bin 4

4 l l
0 0000 0001

0 001

Figure 3: A possible design for a five bin encoder. The first bin is uncoded, hence no tree
is shown. Bin indices are shown in italics, output bits in boldface. The input bits are the
codewords shown as terminal nodes of each tree.

1.3 Relation to Interleaved Entropy Coding
An important special case of the entropy coder arises when all output bits generated
from each tree in the encoder are mapped to the uncoded bin. Imposing this restric-
tion reduces encoding complexity, and the encoder amounts to interleaving several
separate variable-to-variable length binary codes. This technique was first suggested

4

in [5], which used interleaved Golomb codes for compression. Howard [4] gives a more
thorough analysis of interleaved entropy coding.

By increasing the number and complexity of the variable-to-variable length codes,
it’s clear that that we can make asymptotic redundancy arbitrarily small. With
the additional flexibility of the technique presented here, a given redundancy target
should be achievable with fewer and/or simpler codes.

2 Encoding and Decoding

2.1 Decoder Operation

We now describe the encoder and decoder operation, beginning with decoding since
it determines the encoding procedure. It is convenient to think of each bin in the
decoder as containing a list of bits. To decode, initially we place all of the encoded
bits in the first (uncoded) bin, and all other bins are empty. At any time, each
nonempty bin (with the exception of the uncoded bin) will contain a single codeword
or a suffix of a codeword. Decoding the next source bit amounts to taking the next
bit from the bin to which the source bit was assigned. If this bin is empty, we first
reconstruct the codeword in that bin by taking bits from other bins as needed.

Software decoding uses two recursive procedures, GetBit and Getcodeword.
GetBit simply takes the next available bit from the indicated bin. If the bin is
empty then it first calls Getcodeword. Given an empty bin, Getcodeword deter-
mines which codeword must have occupied the bin by taking bits from other bins
(via GetBit), then places that codeword in the bin. The Getcodeword procedure is
similar to Huffman decoding, except that at each step we take the next bit from the
appropriate bin, not (necessarily) from the encoded bit stream.

To decode the ith bit, let binindex equal the index of the bin to which the ith
bit would have been assigned. This assignment may be a function of any previously
decoded bits and any other information available to both the encoder and decoder.
Then the ith decoded bit is equal to GetBit (binindex).

2.2 Encoder Operation
To ensure that decoding is possible, we must pay careful attention to the order in
which bits are processed by the encoder. Processing bits in the correct order is not
straightforward.

One encoding method that produces encoded bits in the appropriate order involves
maintaining a linked list of bit values. Each record in the list stores the bit value and
the index of the bin that contains the bit. Initially the list contains the entire input
sequence in order of arrival. When a codeword is processed, we delete the bits that
formed the codeword and insert the resulting output bits in the list at the location
of the first bit in the codeword.

To determine the order in which the codewords are processed, perhaps the con-
ceptually simplest method (though in our experience not the fastest) is at each step

5

to identify the nonempty bin with the highest index. We take bits (in order) from
this bin until we have formed a codeword, appending flush bits if needed to complete
the final codeword of the bin.

For example, suppose the linked list
for the encoder of Figure 3 is as shown
in the left half of Figure 4. Bin 4 is
the highest indexed nonempty bin, so
we search through the list for bits in bin
4 until we form the codeword 01. This
codeword produces output bits 1,0,1, in
bins 3,2,1 respectively (see Figure 3(c)),
so these records are inserted in the linked
list as shown in the right half of Figure 4.

When all bits are in the first bin,
the encoder output consists of these bits
taken in order.

To manage long input sequences with
limited memory, we can partition the in-

(m
m
m

~~

m
m

Figure 4: One step of encoding in software
using the encoder of Figure 3. In each
pair, the left (unshaded) box indicates bit
value; the right (shaded) box shows bin
index.

put sequence into blocks of known size and encode each block separately3

3 Estimating Rate
We would like to quantify the performance of a given encoder design. One metric
we can estimate is the rate (the expected number of output bits per input bit) when
the input to the encoder is an independent and identically distributed stream of bits
into bin j , each bit having probability of zero equal to p . We denote this quantity by

Since bins produce output bits that are placed in other bins, estimates of R j (p)
generally rely on rate estimates for other bins. If bin e has as input X1 bits with
probability q1 and X2 bits with probability q 2 , the resulting contribution to rate might
be approximated as

(P) .

1. XlRt(41) + X 2 & (4 2) , or

The first approximation would tend to be more accurate when long runs of bits in
bin e have the same probability, and the second would be more accurate if the two
types of bits are well mixed. The first tends to be optimistic when R e (p) is convex n,
the second tends to be optimistic when & (p) is convex U.

In this section we describe two recursive techniques for estimating R j (p) based on
the above approximations. Both techniques usually give quite good estimates. The
rate estimates produced are asymptotic as the input sequence length becomes large,
i.e., the cost of bits used to flush the encoder is not included.

3We have developed a more efficient alternative technique but it is beyond the scope of this paper.

6

The rate estimation techniques do not give exact results because the rate functions
are in general nonlinear, and because bits arriving in each bin may not be independent.
This dependence arises because encoding a single codeword may result in multiple
output bits being placed in the same bin.

3.1 First Method for Rate Estimation
We can estimate Rj (p) recursively using the estimates for R l (p) , R 2 (p) , . . . , R j - l (p) .
If for each input bit non-terminal node k of the tree for bin j produces v k (p) expected
bits, each with probability of zero q k (p) , then we use the estimate

1, j = 1

where B (k) is the output bin index for the kth node in the tree, and the sum is over
all non-terminal nodes in the tree.

For example, using (1) to estimate Rd(p) for the encoder of Figure 3 gives

3.2 Second Method for Rate Estimation
In the second technique for estimating R j (p) , for each bin we produce a list of (X, Q)

pairs. Each pair in the list represents an expected number of bits X and corresponding
probability of zero q arising from the output of some higher indexed bin or from the
source. Initially each list is empty except the list for bin j , which contains the pair

At each step, if the list for bin k' (initially l = j) contains pairs (X,, QI), (X2, q 2) , . . . ,
(W

(Xrn, qm) , we compute the total expected number of bits in the bin

k

and the average probability of a zero in the bin

Treating the input to bin k' as A, bits, each with probability of zero &e, we compute
the resulting pairs (X i , Q;) at each non-terminal node in the tree and append (Xi, 4;)
to the list for the bin to which the output bit associated with node k is mapped.

We repeat this procedure, continuing to the first bin. Finally, our estimate of
R j (p) is equal to the total expected number of bits in the first bin, 111.

Using this technique to estimate & (p) for the encoder of Figure 3 gives

7

For p E (l / 2 , I), the method of (1) gives a slightly higher rate estimate in this example.
Variations of these techniques can be used to accurately estimate the rate obtained

for a source that produces bits with varying (but known) distributions.

4 Code Design
In this section we illustrate a procedure to design a coder. We begin with a redun-
dancy target A which is the maximum allowed redundancy (in bits per source bit)
and a set of candidate trees to be used in the encoder. In this context each tree does
not include assignments of bin indices to non-terminal nodes or output bit labels to
branches. These assignments will be made as part of the design procedure.

In addition to the family of trees illustrated in Figure 2, there are many other
useful trees we can use to design good codes. For example, Figure 5 shows the five
useful trees with four terminal nodes.

Figure 5: The set of useful trees with four terminal nodes.

We select a trees for each bin in order of increasing bin index. When designs for
bins 1 , 2 , . . . , j - 1 have been completed, designing the j t h bin amounts to selecting a
tree for the bin, assigning bin indices to non-terminal nodes and output bit labels to
branches, and calculating +I, the probability value where we switch from bin j - 1
to bin j . (Of course no design work is required for the first bin since it is uncoded and
zo = 1/2.) For example, Figure 6 shows a case where the encoder has been designed
for the first three bins, and our redundancy target A is met when p is less than some
value p*. Thus we know that z 3 5 p" , and we need to specify the tree to use for the
fourth bin of the encoder.

To do this, we can take from our set of candi-
A date trees any tree that is useful at p* and assign

branch and non-terminal node labels based on g,
this probability value. That is, we calculate the 2
branch probability for each non-terminal node 5
in the tree and label the branches so that a zero H
output is more likely than a one at each node.
Then, at each non-terminal node, if a zero out-

-0

""""""""""""""""" "_ 4

1
P- put bit occurs with probability q, we map this bit

to the bin with index l such that q E [zt-l, ze).
This construction maps output bits to bins

in regions where the redundancy is less than the target A, and it can be shown that

Figure 6: Redundancy of an encoder
after designing the first three bins.

8

(to the extent that (1) is accurate) the redundancy at probability p* is strictly less
than A. This follows in part from the following lemma (proof omitted):
Lemma If a tree is useful at p* , then the expected number of output bits is less than
the expected number of input bits, or equivalently,

(where Xk(p*) is the expected number of output bits generated at node k and the sum
is over all non-terminal nodes IC).

Thus, the tree we have selected for the new bin produces redundancy less than
A at probability p*. Since the rate functions for each bin are continuous, we have
extended the range where the encoder meets the redundancy target.

We can also try assigning branch labels, and even selecting a tree, based on some
probability target value larger than p*. This alternative generally produces larger
redundancy at p*, but frequently meets the redundancy target A at p* and may
extend further the range over which bin j is used, which can help to reduce the total
number of bins used in the encoder.

5 Results and Conclusion
Figure 7 shows the redundancy of 0.

some entropy coders designed using
the technique described in Section 4. 0.
The trees in these codes have an aver- -?

a

m

16

12

age of about 6 terminal nodes. 0.08
Figure 8 shows the estimated and 2

measured redundancy of a 23-bin g 0.04
coder which uses only the family of 5
trees illustrated in Figure 2. The esti- E o.oo
mated and measured redundancy are 0.5 0.6 0.7 0.8 0.9 1.0
clearly in close agreement, and the two
redundancy estimates obtained using Figure 7: Estimated redundancy of some en-
the of Section 3 are indistin- coders t h a t have a Small number of bins, com-
guishable at this scale. puted using the method of Section 3.2.

Decoding speed was tested for a 10-bin coder. For this test, a sequence of prob-
abilities was generated from a uniform distribution on [0,1], and random bits were
generated according to these values. We are not concerned with modeling the prob-
abilities here, so bin assignments were computed outside of the timing loop as the
optimal assignment given the bit probability; in this way we measured only the speed
(and efficiency) of the actual coding.

This coder was tested against the “shift/add” binary arithmetic coder from [6]
with parameters b = 16, f = 12. The arithmetic coder was modified t o be similarly
isolated from the modeling; bit probabilities were supplied in a form convenient to
the coder.

“ I

S

U

probability of zero

9

The measured decoding speed for our 10-bin coder was about 2.7 Mbit/sec, com-
pared to 2.0 Mbit/sec for the arithmetic coder. The test used a Sun Ultra Enterprise
with a 167 MHz UltraSPARC processor. In this test the redundancy of both coders
was very low: 0.0032 bits/source bit for our coder and 0.0019 bits/source bit for the
arithmetic coder.

It should be noted that our en- E
coder was about 8 times slower than 2 1

our decoder. In contrast to the de- 2 0.002-
coding, we made no effort to opti- .$
mize the encoding; regardless, en-
coding does appear t o be inherently 2 0.001 -
slower than decoding. 11

tions (eg. [7]) may be faster than the 0.000 I I I I

arithmetic coder we tested. How-

Other arithmetic coding varia- 3
0.5 0.6 0.7 0.8 0.9 1.0

probability of zero
ever, our results suggest that, at this
early stage of development, our tech-
nique offers decoding speeds compet-
itive with those of arithmetic coding.

Figure 8: Estimated (solid curve) and measured
(individual points) redundancy for a 23-bin coder
which has a designed maximum redundancy of
0.003 bits/source bit.

References
[I] S. W. Golomb, “Run-Length Encodings,” IEEE Pansactions on Information

Theory, vol. IT-12, no. 3, pp. 399-401, July, 1966.

[2] J. Rissanen and G. G. Langdon, “Arithmetic Coding,” IBM Journal of Research
and Development, vol. 23, no. 2, pp. 149-162, March, 1979.

[3] I. H. Witten, R. M. Neal, J. G. Cleary, “Arithmetic Coding for Data Compres-
sion,” Communications of the ACM, vol. 30, no. 6, pp. 520-540, June, 1987.

[4] P. G. Howard, “Interleaving Entropy Codes,” Proc. Compression and Complexity
of Sequences 1997, pp. 45-55, 1998.

[5] F. Ono, S. Kino, M. Yoshida, and T. Kimura, “Bi-Level Image Coding with MEL-
CODE - Comparison of Block Type Code and Arithmetic Type Code,” Proc.
IEEE Global Telecommunications Conference (GLOBECOM ’89), pp. 0255-
0260, Nov. 1989.

[6] A. Moffat, R. M. Neal, and I. H. Witten, “Arithmetic Coding Revisited,” ACM
Pansactions on Information Systems, vol. 16, no. 3, pp. 256-294, July, 1998.

[7] W. B. Pennebaker, J. L. Mitchell, G. G. Langdon, and R. B. Arps, “An Overview
of the Basic Principles of the Q-Coder Adaptive Binary Arithmetic Coder,” IBM
Journal of Research and Development, vol. 32, no. 6, pp. 717-726, November,
1988.

10

